

KELVIN Clim KEG

Cooling Capacity: 100 ~ 1500 USRT

KELVIN AIR CONDITIONING

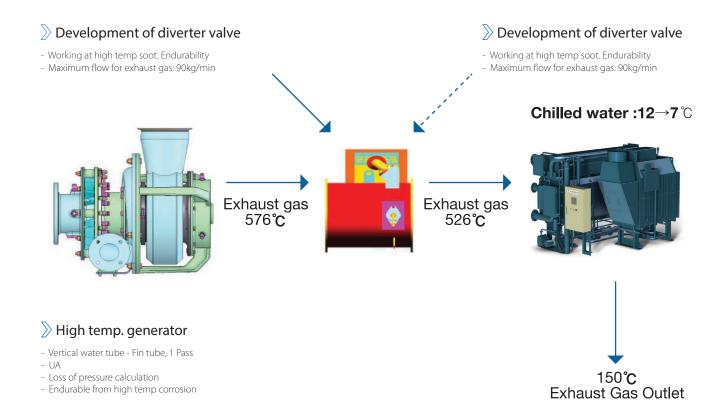
KELVIN CIIM KEG Kelvin airconditioning

KELVIN Clim KEG

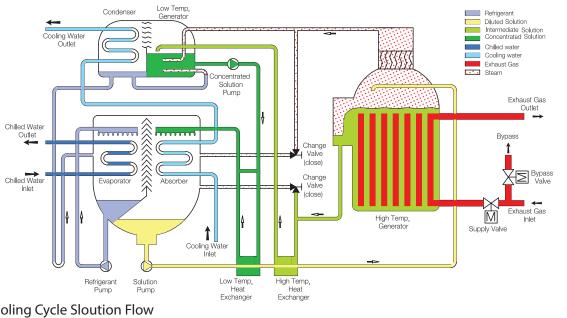
KELVIN Clim KEG: Double Effect Exhaust Gas Absorption Chiller & Heater

Cooling Capacity: 100 ~ 1500 USRT

KELVIN AIRCONDITIONING

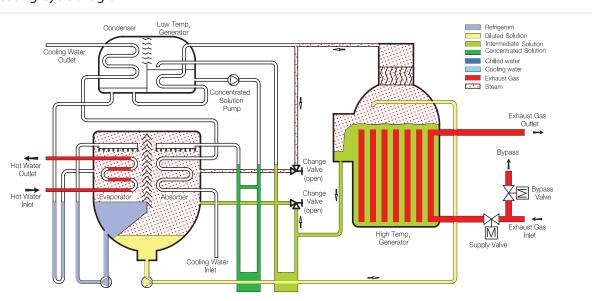


- 1. Waste exhaust gas can be usedfor drive heat source.
- 2. Convertible use of cooling and heating.
- 3. Energy saving product.


- 4. Increase in the efficiency of total energy.
- 5. No power overload in summer season.
- 6. Environment-friendly to use water as refrigerant.

> CYCLE DIAGRAM

Double Effect Exhaust Gas Absorption Chiller & Heater


> Cooling Cycle Diagram

Cooling Cycle Sloution Flow

Heating Cycle Diagram

> Heating Cycle Sloution Flow

High Temp. Generator	Refrigerant Steam	Evaporator	Soulution	Low Temp	High Temp	High Temp
	Solution ->	Absorber	Pump	Heat Exchanger	Heat Exchanger	Generator

KELVIN CIIM KEG -Kelvin airconditioning

> SPECIFICATION

Double Effect Exhaust Gas Absorption Chiller & Heater

MODEL		UNIT	KEG 010	KEG 012	KEG 012	KEG 018	KEG 021	KEG 024	KEG 028	KEG 032	KEG 036	KEG 040		
Cooling capacity		USRT	100	120	150	180	210	240	280	320	360	400		
		kW	351	422	527	633	738	844	984	1.125	1.265	1.406		
Heating Capacity		Mcal/h	283	340	425	510	595	680	793	906	1019	1133		
		kW	329	395	494	592	691	790	922	1053	1185	1317		
Temp.	emp.	°C		12/7										
&	Flo	Flow rate		60.5	72.6	90.7	109	127	145	169	194	218	242	
Hot Water	P.	Drop	mAq	4.8	5.1	6.6	7.0	6.4	6.3	4.6	4.5	5.0	5.1	
	Con	Connection mm			100 125						150			
Chilled	Т	emp.	°C											
& Hot	Flo	Flow rate		100	120	150	180	210	240	280	320	360	400	
Water	P	P. Drop		11.1	11.3	11.5	11.8	11.8	12.1	11.2	10.7	11.1	10.8	
	Con	Connection		125 15			0			20	200			
	Т	Temp.	Kg/sec	0.88	1.05	1.32	1.58	1.84	2.11	2.46	2.81	3.16	3.51	
	Temp.	Cooling	°C	450/165										
Exhaust	Heating		°C	450/125				125						
Gas	pressure. Drop		mmAg	77	82	79	92	97	113	129	131	123	131	
	Outlet Conn mm			400				500				600		
	Diver	tler Valve	mm	400				500				600		
	Pow	er Source						3 O 380V (50Hz)						
		Abs. Pump kW(A)		2.0 (5.7)				2.4 (6.1)				3.4 (9.0)		
Electric		Ref. Pump kW(A)				0.3 (1.	5)							
		Purge Pump kW(A)												
		orol Panel	KVA				0.2 (0.5)							
	Amp.(400Vac)		A		9.1			9.5		9.6		12.5		
		ngth(L)	mm	2.597 3.680			3.686		4.744		4.776			
Size		Width(w)		1.662	1.740	1.857	1.935	2.150	2.189	2.267	2.375	2.270	2.309	
		ight(H)	mm			979			2.3		16.5		470	
Weight		ligging	mm	5.0	5.3	6.4	6.8	7.9	8.5	9.8	10.3	12.8	13.2	
	Operation		Ton	5.4	5.8	7.0	7.4	8.6	9.3	10.7	11.3	14.0	14.6	
Tube exchange Space		Ton	2.4	2.400 3.			400 4.5				500			

- 1. 1 USRT = 3,024 kcal/h
- 2. Working Pressure of each water side is based on 1.0MPa (151 psig).
- Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2·h· "C/kcal for Evaporator.
 Catalogue specifications are subject to change without prior notice.

> SPECIFICATION

Double Effect Exhaust Gas Absorption Chiller & Heater

KEG 045	KEG 050	KEG 056	KEG 063	KEG 070	KEG 080	KEG 090	KEG 100	KEG 110	KEG 120	KEG 130	KEG 140	KEG 150	
450	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500	
1.582	1.757	1.958	2.214	2.460	2.812	3.163	3.515	3.666	4.218	4.218	4.921	5.272	
1271	1416	1586	1784	1982	2266	2549	2832	3115	3398	3398	3965	4248	
1481	1646	1843	2074	2304	2633	2962	3291	3621	3950	3950	4608	4937	
272	302	339	381	423	484	544	605	665	727	786	847	907	
4.4	3.9	3.6	5.0	6.6	4.7	6.4	8.5	7.2	9.2	11.5	8.3	10.2	
		200				250			300		35	50	
						32 / 37.5							
450	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500	
10.7	10.8	7.7	10.6	14.0	8.7	11.8	15.6	3.0	3.8	4.8	4.0	4.9	
25	0		300			350		400					
3.95	4.39	4.92	5.53	6.15	7.03	7.91	8.78	9.66	10.54	11.42	12.30	13.18	
						450/	165						
						450/	/125						
133	134	143	133	146	155	153	176	213	221	212	206	184	
		750								1000			
				75	50					1000			
						3 O 380V	(50Hz)	7.5(21.9)					
			0	5.5(1	14.3)								
		0.4 (1.6						1.5 (3.8)					
			0.4 (1.4))						0.75 (2.2)			
0.2 (0.5)									20.4				
4-0	4.954		17.8 4.998 5.540 6.038		5.460	20.0 5.958	6.483	6 202	6 010	28.4	6 074	7.475	
2.491	2.569	2.934						6.293	6.818	7.318	6.974	7.475	
	744	2.734	3.069	3.459	3.300	3.480	3.530	4.348	3.678	4.598	4.932	5.182	
15.7	16.5	21.2	23.1	24.6	31.0	33.6	35.6	41.1	43.4	46.4	50.2	54.1	
17.2	18.1	23.7	25.7	27.5	34.8	37.6	39.9	46.2	48.8	52.1	56.5	60.8	
17.2	2.400		5.200	5.700	5.200	5.700	6.200	5.700	6.200	6.700	6.200	6.700	
	2. 100		3.200	3.700	3.200	3.,00	0.200	3.700	0.200	0., 00	0.200	0.7 00	

Note

- 1. 1 USRT = 3,024 kcal/h
- 2. Working Pressure of each water side is based on 1.0MPa (151 psig).
- Fouling factor 0.0001 m 2.h. "C/kcal for Absorber and Condenser, 0.0001 m 2·h. "C/kcal for Evaporator.
 Catalogue specifications are subject to change without prior notice.

KELVIN Cilm KEG	Kelvin airconditionin
AL .	
Note	

Note	

Kelvin airconditioning —

----- KELVIN Clim KEG

