

KELVIN Clim KDL

Cooling Capacity: 75 ~ 1000 USRT

KELVIN AIR CONDITIONING

KELVIN Clim KDL

KELVIN Clim KDL: Single Effect Double Lift Hot Water Absorption Chiller

Cooling Capacity: 75 ~ 1000 USRT

KELVIN AIRCONDITIONING

Non-carbon eco-friendly chiller

- Use of regional heating hot water (Energy useefficiency %84. The ratio of incineration heat of the combined waste heat - %74).
- Use of natural refrigerant water instead of Freon refrigerant destroying
- · No CO2 and Nox which cause the global warming

Zero explosive danger by vacuum operation

- · Internal pressure vacuum.
- · No danger of gas explosion by use of hot water
- · Safety from the danger of high-pressure damage.

The excellent partial load part-load value

- Auxiliary cycle auto stop if the cooling load is below %80.
- Energy saving by %25 per chilled ton due to the increase in the efficiency

Low noise & Low vibration

Noise level: Below 75 dB at 1 m distance

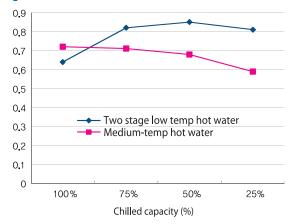
> IPLV(Integrated Part-Load Value)

Single	Chilled water inlet °C	Cooling capacity	COP	Part Load rate	IPLV
effect	31.0	100%	0.64	0.01	
double	29.8	75%	0.82	0.42	0.83
lift type	28,8	50%	0.85	0.45	0.63
	28.0	25%	0.81	0.12	
	Chi ll ed water inlet °C	Coo l ing capacity	COP	Part Load rate	IPLV
Single	31.0	100%	0.72	0.01	
effect	29.9	75%	0.71	0.42	0.68
type	29.1	50%	0.68	0.45	0.00
	28.1	25%	0.59	0.12	

- 2) Assuming that the ambient humid temp is 27°C for the chilled water inlet temp, it was designed to be lower depending on the hot water flow rate.
- 3) Part load rate is subject to the paragraph 5.3.2.2 of AR1560-2000.

Economic air-conditioniong

- Conventional Chiller: 6. 15 °C (95 °C -> 80°C)
- Insufficient heating hot water Sing-effect/ Double-lift Chiller: 6. 40 (95 °C -> 55°C)
- Saving 60% of the existing hot water use capacity Wide range of the use


Economic air-conditioniong

- Precise control of start-up, stop, capacity control, abnormal stop, etc.
- · Easy to handle due to the touch screen.
- Control of auxiliary cycle, self-diagnostic function & other controls

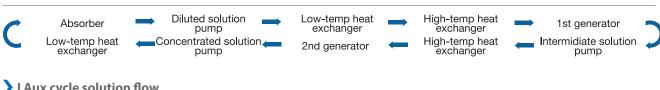
Saving maintenance cost

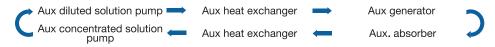
- Leakage per month: 3cc or below. High vacuum condition.
- · Auto steam extraction. Non-condensing gas storage.
- Optimal condition of the operation.
- · Operating with only minimum purging.

Comparison of partial load COP

Kelvin airconditioning KELVIN Clim KDL

> CYCLE DIAGRAM


Single Effect Double Lift Hot Water Absorption Chiller


As the refrigerant is evaporated from the evaporator, the chilled water flowing inside the heating tube of the evaporator is cooled down and the refrigerant evaporated is absorbed by the concentrated absorbing liquid from the 2nd generator. The concentrated absorbing liquid will become thick absorbing liquid and the heat generate will be absorbed by the chilled water. Toe thick absorbing liquid which absorbed the refrigerant steam from the absorbing unit will go to the 1st generator passing through the lowtemp and high-temp heat exchangers. Toe hot water at °95 • • • in the 1 st generator will heat the thick absorbing liquid to generate the refrigerant steam and then it flows to the 2nd generator after passing through the high-temp heat exchanger. The medium concentrated thick absorbing liquid com from the 2nd generator will be heated by the hot water come from the 1 st generator to generate the refrigerant steam.The refrigerant steam generated from the 2nd generator will be absorbed by the absorbing liquid flowing outside the heat

tube and the thick absorbing liquid which absorbed the refrigerant steam from the aux absorbing unit will flow to the aux generator after passing through aux heat exchanger, so that it is heated by the hot water flowing the heat tube of the aux generator to generate the refrigerant steam. Then, the concentrated absorbing liquid is returned back to the aux absorbing unit after passing through the aux heat exchanger. The refrigerant steam generated from the 1 st generator and the aux generator will condense the refrigerant with the leakage of the chilled water inside the heat tube and then it absorbs the heat generated. That is, the hot water flows the 1st generator----> 2nd generator----> aux generator while the chilled water flows absorbing unit ----> aux absorbing unit ----> condenser in order to form a chilled cycle. In addition, the lowtemp hot water two stage absorbing chiller has main cycle and aux cycle and the details of the solution Oiquid) flow are as below.

Main cycle solution flow

I Aux cycle solution flow

Kelvin airconditioning KELVIN Clim KDL -

> SPECIFICATION

Single Effect Double Lift Hot Water Absorption Chiller (KDL)

Hot Water inlet temp 95 °C

	Model	Unit	KI 2AI	DL B75	KE 2AE		KE 2AB			DL 3135	KI 2AB		KI 2AB			DL 3210	KI 2AB		KI 2AB	
Chilled	water temp. in-outlet	°C	12-7	13-8	12-7	13.8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8
Coo	ling capacity	kW	257	264	309	316	376	387	464	474	531	545	619	633	721	738	823	844	928	949
		USRT	73	75	88	90	107	110	132	135	151	155	176	180	205	210	234	240	264	270
Chiled	Flow rate	m³/h	44.2	45.5	53.2	54.4	64.7	9.6	79.8	81.6	91.3	93.7	106	109	124	127	142	145	160	163
Water	Pressure drop	mH₂O	6.1	6.4	6.6	6.8	9.1	92	10.1	10.5	9.1	9.5	9.3	9.6	9.3	9.7	9.1	9.5	9.8	10.2
	Nozzle size	mm		80				100	0					1.	25				15	0
	in-outlet temp	°C																		
Cooling	Flow rate	m³/h	104	107	125	128	152	156	188	192	215	220	251	256	292	298	333	341	376	383
Water	Pressure drop	mH₂O	10.0	10.5	10.2	10.6	10.7	11.1	11.8	12.1	11.5	11.9	12.4	21.7	12.2	12.6	12.3	12.8	12.0	12.3
	Nozzle size	mm						15	0							200)			
	in-outlet temp	°C																		
	Flow rate	ton/h	8.8	8.9	10.6	10.7	12.9	13.1	15.9	16	18.2	18.4	21.2	21.4	24.7	24.9	28.1	28.5	31.8	32
Hot	Pressure Main body	mH₂O	3.5	3.6	3.5	3.6	5.4	5.5	5.9	6.0	5.7	5.8	6.0	6.1	5.5	5.6	5.7	5.9	5.2	5.3
Water	drop Control valve	mH₂O	2.3	2.4	3.3	3.4	1.8	1.9	2.8	2.9	1.5	1.5	2.0	2.1	2.7	2.8	1.4	1.4	1.8	1.8
	Nozzle size	mm				6	5								80					
	Control valve Nazzle size	mm		40 50 65						80										
	Power																			
Electrical	Solution pump	kW		3.3(1				3.9(14.8)			4.5	(15.8)		5.1(16.8)					
power	Refrigerant pump	kW		0.2(1	.1)					0.3	3(1.5)						0.4(1.5)		
power	Prug pump	kW									().4(1.4)								
	Control panel	kW																		
	Maximum ampere@380V	Α		15.8				18.2				19.					20.2			
	Length	mm		2.67	70			3.69	90			3.6	96		4	4.767				852
Demension	Width	mm				1.7									989				2.240	
	Height	mm				2.2							2.4		428					566
Weight	Rigging weight	ton		1.4	4.		5.7		6		7.2		7.5			3.8	9.2		11	
	Operation weight	ton	5	5.1	5.	3	6.6	5	7		8.4		8.9		10).4	10.)	31	.4
Tuk	oe exchange space	mm		2.40	00					3.	.400									

Hot Water inlet temp 115"C

	Мос	del	Unit	KI 2AI	DL B75	KE 2AE		KE 2AB		KI 2AE	DL 8135	KE 2AB	_	K[2AB			DL 3210	K[2AB		KI 2AE	DL 3270
Chilled	water te	mp. in-outlet	°C	12-7	13-8	12-7	13.8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8
Coc	oling cap	acity	kW	274	285	331	341	404	418	496	513	570	591	661	686	770	798	879	914	988	1.027
	ліпу сар	acity	USRT	78	81	94	97	115	119	141	146	162	168	188	195	219	227	250	260	281	292
Chiled	Flo	ow rate	m³/h	47.2	49	56.9	58.7	69.6	72	88.3	88.3	98	102	114	118	132	137	151	157	170	177
Water	Pres	sure drop	mH₂O	11.3	12.1	12	12.7	10.3	11	12.1	12.1	9.1	11	10.4	11.1	10.4	11.1	10.2	11	11	11.7
	Noz	zle size	mm		80				10	0					1.	25				15	0
	in-ou	tlet temp	°C																		
Cooling	FI	ow rate	m³/h	105	109	127	130	156	160	191	196	219	226	254	262	296	305	338	350	380	393
Water		sure drop	mH₂O	10.5	11.2	11	11.4	11.2	11.8	12.1	12.7	11.9	12.6	12.8	13.5	12.5	13.2	12.7	13.5	12.3	13
		zzle size	mm						15	0							200)			
	in-outlet temp		°													,					
		ow rate	ton/h	5.7	5.9	6.9	7.1	8.5	8.7	10.4	10.6	11.9	12.2	13.8	14.2	16.1	16.5	18.4	18.9	20.7	21.3
	Pressure	Main body	mH₂O	3	3.1	3.3	3.4	5.3	5.5	5.9	6.2	4.9	5.1	5.4	5.7	4.2	4.4	4.5	4.7	3.7	3.9
Water	drop Control valve		mH ₂ O	1	1.1	1.5	1.6	2.2	2.3	1.2	1.3	1.6	1.7	2.2	2.3	3.1	3.2	4	4.2	2	2.1
		ozzle size	mm								6	5									
	Contro	valve Nazzle size	mm		40 50																
		Power																			
Electrical		ution pump	kW		3.3(1				3.9(14.8)			4.5(15.8) 5.1(16.8)								
power		gerant pump	kW		0.2(1.1) 0.3(1.5) 0.4(1.5)											5)					
power		rug pump	kW		0.4(1.4)																
		ntrol panel	kW																		
	Maximum ampere		Α		15.8				18.2				19.					20.2			
		Length	mm		2.67	0			3.69) 0			3.6	96			4.767				852
Demension		Width	mm				1.7									989					240
		Height	mm				2.2									.428				2.566	
Weight		ging weight	ton		1.4	4.		5.		6		7.2		7.5		_	3.8	9.2			1.3
	Operation weight		ton	5	5.1	5.	3	6.	5	7		8.4		8.9		10).4	10.9	9	3	1.4
Tube exchange space			mm		2.40	00					3.	.400									

- Standard pressure: Chilled water and cooling water 1.0MPa(1 Okgf/c_G), Hot water 1.6MPa(16kgf/c_G)
 Power standard: 380V, 3Phase, 60Hz(220V, 440V, 460V also available)
 The specification could be changed without any notice.

Kelvin airconditioning -KELVIN Clim KDL

> SPECIFICATION

Single Effect Double Lift Hot Water Absorption Chiller (KDL)

Hot Water inlet temp 95 °C

KI 2AB	_		DL 3340	KI 2AB		KI 2AB		KE 2AB		KE 2AB		KI 2AB		KE 2AB		KI 2AB		KI 2AB		KI 2AB		KI 2AB		
12-7	13-8	12-7	13.8	12-7	13-8	12-7	13-8	12-7	13.8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	
1.030	1.054	1.167	1.195	1.287	1.318	1.476	1.476	1.614	1.652	1.652	1.845	2.061	2.110	2.110	2.373	2.574	2.637	2.837	2.901	3.091	3.165	3.347	3.428	
293	300	332	340		375	410	410	459	470	513	525		600	659	675	732	750	806	825	879	900	264	975	
177	181	201	206	221	227	248	248	278	284	310	318	354	363	363	408	443	454	487.5	499	532	544	160	590	
10.1	10.5	8.9	9.3	9.3	9.7		7.4	9.8	10.2	4.4	4.5	9.7	10.1	4.3	4.5	5.7	6.0	7.4		6.3	6.6	7.8	8.2	
15	О					20	0								250						3	00		
											31/3	6.5												
418	426	473	483	522	533	584	596	654	667	731	746	835	852	939	959				1.172		1.278	1.357		
12	12.3	12.0	12.4	12.1	12.5	8.7	9.0	11.3	12.2	15.9	16.3	12.7	13.0	17.1	17.6	12.6	13.0	16.1	16.6	17.6	18.3	21.9	22.8	
		250						300)						350)					40)		
											95 / 5.													
35.2	35.6	39.9	40.4	44	44.5	49.3	49.9	55.2	55.8	61.7	62.3	70.5	71.2	79.3	80.1	88	89	69.9	97.9	106	107	114	116	
5.4	5.5	5.5	5.8	5.5	5.6	4.9	5.0	5.1	5.2	3.9	4.0	4.4	4.5	3.2	3.3	4.2	4.3	5.4	5.5	4.3	4.5	5.2	5.5	
2.2	2.3	2.8	2.9	1.4	1.4	1.7	1.7	2.1	2.2	2.7	2.7	3.5	3.6	1.7	1.7	2.1	2.1	2.5	2.6	2.9	3.1	3.4	3.6	
					100)		- 10	^								12							
	80)						10	0	2.0	(200)								125					
			C 0/1	0.0)				C 7/2:	2.21	31	380	/ 60Hz	7		10.4/2	F 0\				1	1.4.1.	40.0\		
			6.0(1	5.8)	0.4(1	E)		6.7(2	2,2)						10.4(3	5.0)	1 5	(4.0)			14.1	48.0)		
					0.4(1	.5)					0.4(1 4)					1.5	(4.0)						
												(0.5)												
20.	2		22	2				25.6	5			(0.5)			40.9						53.	9		
4.8				366		5.00	15	5.54		6.04	15	5.6	38	6.13		6.66	51	7.18	39	6.7			291	
2.2				350		3.00		2.26		0.0		3.0	30	0.11	3.0		. .	7.10		0.,	3.3			
2.5				963				2.29				3.600							3.9					
11.	8	13	.5	14		1	9	20	.7	22	2.2	26	.7	28.	.7	30.7		36.4		9.2		40.8		
14.	1	16	.2	16	.9	2	.3	25		26	5.9	31	.6	34		36.	.3	43	.1	45.	5 _	48	3.3	
4.600 5.200 5.700 5.20							00	5.70	00	6.20	0	6.7	700	6.2	00	6.	700							

Hot Water inlet temp 115"C

KI 2AB			DL B340		DL 3375		DL 3420		DL 3470	KI 2AE	DL 3525		DL 3600		DL 8675		DL 3750		DL 3825	KI 2AB	DL 3900		DL 1975
12-7	13-8	12-7	13.8	12-7	13-8	12-7	13-8	12-7	13.8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8	12-7	13-8
1.101	1.143	1.245	1.294	1.375	1.428	1.540	1.600	1.723	1.790	1.790	1.923	2.198	2.286	2.475	2.570	2.750	2.855	3.024	3.144	3.298	3.428	3.573	3.713
313	325	354	368	391	406	438	455	490	509	547	569	625	650	704	731	782	812	806	894	938	975	1.016	1.056
189	197	214	223	236	246	265	275	296	308	331	344	378	393	426	442	473	491	520	541	567	590	614	639
11.3	12.1	10	10.7		11.2	8	8.5	11	11.8	4.8	5.2	5.2	11.4	4.8		6.3	6.7	4.3	4.6	5.5	5.9	6.8	7.3
							200						250							300			
											31/3	б.5											
423	437	479	495	529	546	592	612	633	684	740	765	845	874	952	983	1.058	1.092	1.163	1.202	1.269	1.311	1.374	1.420
12.3	13	12.3	13.1	12.4	13.2	9.8	10.4	13.4	14.2	17.7	18.9	13.9	14.8	18.8	19.9	13.5	14.3	9.1	9.7	11.6	12.3	14.4	15.3
		250						30	0						350)					400)	
											115 /	55											
23	23.7	26.1	26.8	28.8	29.6	32.2	33.1	36	37.1	40.3	41	46	47.3	51.8	53.2	57.6	59.1	63.3	65.1	69	71	74.8	76.9
3.9	4.1	4.1	4.3	4.4	4.6	3	3.1	3.9	4.1	5.1	5.4	3.3	3.5	4.4	4.6	5.7	6	4.7	4.9	5.8	6.1	4.9	5.2
2.5	2.6	3	3.2	3.9	4.1	1.9	2	2.4	2.5	2.9	3.1	1.5	1.6	2	2.1	2.4	2.5	2.9	3.1	1.3	1.4	1.5	1.6
		80										100									125		
		65						80)										125				
										30	380.	60Hz											
			6.0(1	8.8)				6.7(2	2.2)						10.4(3	5.0)					14.1(48.0)	
					0.4(1	.5)											1.5	(4.0)					
											0.4(
	_								_		0.2	(0.5)											
20.			22					25.							40.9						53.9		204
4.8				866		5.0	05	5.54		6.04	15	5.6	38	6.13		6.6	61	7.18	39	6.7			291
2.2				350				2.26							3.0						3.3		
2.5		12		963			10	2.29		2.0		2.0	7	20	3.6		7	26.4		3.93		40.8	
11.		13		14			19).7		2.2	26		28.		30		36		9.2			
					25			5.9	31		34		36.		43		45.5		48				
4.600 5.200							5.7	700	5.2	UU	5.70)()	6.20	10	6.	700	6.20	JU	6.	700			

In different heat source and operation, the conditions can be selected as an option.

- 1) Non-standard water pressure.
- 2) Heat tube material is not copper or different thickness.
- 3) Non-standard temp. conditions for hot, cooling and chilled water.

ELVIN Clim KDL ———————————————————————————————————	Kelvin aircondition
Note	
Note	

Note		

Kelvin airconditioning —

----- KELVIN Clim KDL

