

KELVIN Clim KDA

Cooling Capacity: 50 ~ 1500 USRT

Double-Effect Direct Fired Absorption Chiller & Heater

KELVIN AIR CONDITIONING

KELVIN Clim KDA

KELVIN Clim KDA : Double-Effect Direct Fired Absorption Chiller & Heater Cooling Capacity: 50 ~ 1500 USRT

KELVIN AIR CONDITIONING

1. High rellablllty

- Designed to enhance the reliability and durability.
- Robust structure through the perfect reliability test for long time and higher reliability by adopting high quality components.

2. Efficient operation

- Energy saving and efficiency realized.
- Optimal control for the solution cycling volume by inverter depending on the cooling load.
- Optimal PID control by sensing the operating condition with the level sensor.
- Minimized power consumption due to precise operation and partial load operation. [Option] Early reduction, Anti-freezing, Refrigerant

generation, Solution refining, Tube ball clean,

Crystal forming prevention from power failure.

3. Convenient partition

- Repair and maintenance is easy. Multi-partition structure.
- Mounting/detaching structure for easy repair and maintenance.
- Partial incoming to make it possible for field work such as remodeling at narrow space. Assembling at field is possible.

4. Perfect vacuum

- High performance & purge system.
- · Cost-efficiency for maintenance.
- Leakage for one month at below 3cc.
- High vacuum condition.
- Auto purge. Non-condensing gas storage.
- Maintaining optimal operating condition.
- Operation with only minimum seam extraction.

Anti Crysta

5. Low noise and low vibration

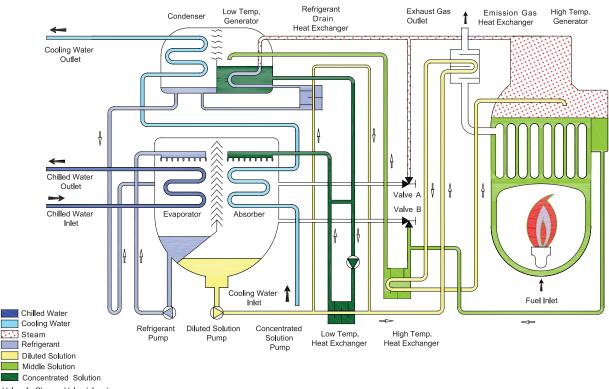
• Below 75dB at 1 m distance for noise level.

6. Enough capacity

- Heating capacity increase system.
- Designed to increase up to 3 stages from the standard.
- · Designed to increase up to 3 stages from the standard.

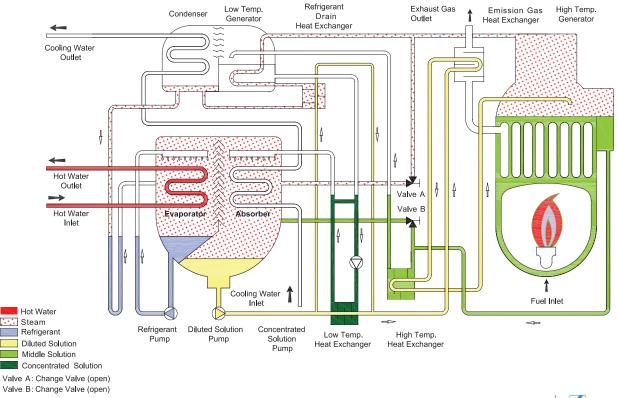
7. Latest operation

- Latest MICOM, remote control and BAS compatible.
- Self-diagnosis, 16-bit Micro Process to ensure precise
 and safe operation
- Simple operation. Easy MICO setting designed with algorithm allowing automatic operation
- Customer's convenience for operation due to remote control function along with the
- operating condition record and schedule operation [Option] Monitoring system



CYCLE DIAGRAM

Double-Effect Direct Fired Absorption Chiller & Heater


Cooling Cycle Diagram

Valve A: Change Valve (close) Valve B: Change Valve (close)

Valve B: Change Valve (close)

Heating Cycle Diagram

Double-Effect Direct Fired Absorption Chiller & Heater - Normal Efficiency Model (KDA) - COP : 1.18

										-	louer (in			
	MOI	DEL	UNIT	KDA 005	KDA 006	KDA 007	KDA 008	KDA 010	KDA 012	KDA 015	KDA 018	KDA 021	KDA 024	KDA 028
Coo	Cooling capacity		USRT	50	60	70	80	100	120	150	180	210	240	280
200	inig cu	pucity	kW	176	211	246	281	351	422	527	633	738	844	984
Hea	Heating Capacity		Mcal/h	151	181	212	242	302	363	454	544	635	726	847
	Ū		kW	176	211	246	281	351	422	527	633	738	844	984
Chilled		Temp.	ĉ		12 / 7 °C (Heating 55.6 / 60 °C)									
&		&		30.2	36.3	42.3	48.4	60.5	72.6	90.7	108.9	127.9	145.2	169.3
Hot Water		Hot	mAq	7.6	7.7	5.8	5.4	5.9	6.0	8.0	8.1	7.5	7.4	5.3
		Water mm			80				10)0			25	
		Temp.						3	32 / 37.5 °C			-		
Cooling	F	low rate	ton/h	50	60	70	80	100	120	150	180	210	240	280
Water		P. Drop	mAq	3.5	3.7	8.2	7.7	3.3	3.5	9.6	10.1	5.8	4.7	8.7
	Connection		mm	100				12	25			50		
		Cooling	Nm /h	14.4	17.3	20.2	23.0	28.8	34.6	43.2	51.8	60.5	69.1	80.6
	Gas	Heating	Nm /h	17.1	20.5	23.9	27.4	34.2	41.0	51.3	61.6	71.8	82.1	95.8
Fuel		Connection	mAq					4	l0(4.000m	mAq)				
ruei		Cooling	kg/h	14.8	17.8	20.8	23.7	29.6	35.6	44.5	53.4	62.3	71.2	83.0
	Oil	Heating	kg/h	17.6	21.1	24.6	28.2	35.2	42.3	52.8	63.4	73.9	84.5	98.6
		Connection	mm			0			15					
	Pov	wer Source						3	Ø 380	60Hz				
	Abs.	Abs. Pump No. 1 kW(A)		1.2 (4.0)					2.0 (6.0)			2.4 (7.5	5)	3.0 (11.0)
	Abs.	Abs. Pump No. 2 kW(A)			0.3	(1.6)			0.4 (1.6)		1.2 (4.5)			
	R	lef. Pump	kW(A)					0.3 (1.5)						
El a atrica		ırge Pump	kW(A)									0.4 (1.4	1)	
Electric		mer Blower	kW(A)	0.37	' (1.0)		0.	75 (2.1)			1.1(4.0)	1.5 (4.0)	1.8 (4.4)
	(Dil Pump	kW(A)	0.24 (0.6)										
	Cor	ntorol Panel	kW(A)							0.2 (0.5)			
	Total	Gas	А	9	.6	10).7		13.1					
	Amp.	Oil	А	9		10).7		13.7					
	L	.ength(L)	mm	2	.900	3.4	400	2.632	2.832	3.6	544			
Size	١	Width(w)	mm	1	.890	2.	100	1.9	46	2.051	2.060		2.140	
	ŀ	leight(H)	mm		2.2	20			2.0	24			2.381	
Weight		Rigging	Ton	2.7	2.9	3.1	3.5	3.8	4.0	4.9	5.3	6.1	7.2	7.7
weight		Operatin	Ton	3.0	3.2	3.4	3.8	4.6	4.8	5.8	6.4	7.5	7.8	8.7
Space fo	or Tube	Replacement	mm	2.0	00		2.4	100			3.4	00		

Note

1. 1 USRT = 3,024 kcal/h

2. Working Pressure of each water side is based on 1.0MPa (151 psig).

3. Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm 3 , Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg.

4. Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2 h "C/kcal for Evaporator.

Double-Effect Direct Fired Absorption Chiller & Heater - Normal Efficiency Model (KDA) - COP : 1.18

000		cee on			puor	- crime			omian	Lincici			,,		
KDA 032	KDA 036	KDA 040	KDA 045	KDA 050	KDA 056	KDA 063	KDA 070	KDA 080	KDA 090	KDA 100	KDA 110	KDA 120	KDA 130	KDA 140	KDA 150
320	360	400	450	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
1.125	1.265	1.406	1.582	1.757	1.068	2.214	2.460	2.812	3.163	3.515	3.866	4.218	4.569	4.921	5.272
968	1089	1210	1361	1512	1693	1905	2117	2032	2286	2540	2794	3048	3302	3556	3810
1.125	1.265	1.406	1.582	1.757	1.968	2.214	2.460	2.362	2.657	2.952	3.248	3.543	3.838	4.133	4.428
	·					12 / 7 C	(Heating	55.6 / 60	C)						
320	360	400	450	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
	5.7	5.9		5.3	4.2	5.7	7.6	5.5	7.4	9.7	7.4	9.4	11.7	9.4	11.5
	150				200				250			300		35	0
							32 / 37.5	C							
320	360	400	450	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
8.8	8.9	8.8	8.6	8.7	6.4	8.8	11.7	9.1	12.3	16.2	12.3	15.7	7.2	12.8	15.7
200 250						300			350	1		1	400		
92.2	103.7	115.2	129.6	144.0	161.3	181.4	201.6	230.4	259.2	288.0	316.8	345.6	374.4	403.2	432.0
109.5	123.1	136.8	153.9	171.0	191.5	215.5	239.4	229.9	258.6	287.3	316.0	344.8	373.5	402.2	431.0
	40(4.000n					mAq)				:	50(4.000n	nmAq)	1		
94.9	106.7	118.6	133.4	1482	166.0	186.8	207.5	237.2	266.8	296.5	326.1	355.8	385.8	415.1	444.7
112.7	126.8	140.8	158.4	176.1	197.2	221.8	246.5	236.6	266.2	295.8	325.3	354.9	384.5	414.1	443.6
					20								25		
							3Ø 38	60Hz							
		3.4 (10.2)				5.5 (20.0) 6.6 (16.2)						7.5 (2			
		1.2 (4.5)		(2.0 (6.0) 2.2 (4.5)					4.5 (16.0)				
			0.4	(15.0)			o				1.5 (4.0))			
2.2.((5.0)		2.0 (6.5)			F F (12 0)	0.4 (1	.4)	7.5 (15.8		11.0 (22.7)				
2.2 ((5.0)		3.0 (6.5)).55 (2.1)	5.5 (13.0)			7.5 (15.8	5)			11.0 (22.7)	
				(0.2 (0	2.5)							
37.4	37.1		38.6			55.9	0.2 (0		44.9			6	59.6		
9.6	39.2		40.7			58.0			47.0				71.7		
4.720		360	4.9	10	5.040	5.580	6.080	5.720	6.220	6.740	6.150	6.670	7.170	6.830	7.330
		380	2.6			2.980			3.370			4.210			530
	2.5		2.6			3.025			3.420			3.645			350
8.3	10.3	10.5	12.6	12.8	18.1	19.6	21.0	27.9	30.2	32.6	37.8	40.7	43.2	47.5	50.0
9.3	11.7	12.1	14.5	14.8	20.7	22.3	24.0	31.8	34.3	37.0	42.1	45.2	48.1	52.7	55.6
		2.4	00			5.200	5.700	5.200	5.700	6.200	5.700	6.200	6.700	6200	6.700
								ļ	1	1	1	-			1

Note

1. 1 USRT = 3,024 kcal/h

2. Working Pressure of each water side is based on 1.0MPa (151 psig).

3. Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm 3 , Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg.

Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2.h. "C/kcal for Evaporator.
 Catalogue specifications are subject to change without prior notice.

Double-Effect Direct Fired Absorption Chiller & Heater - Middle Efficiency Model (KDAE) - COP : 1.364

	MOE	DEL	UNIT	KDAE 005	KDAE 006	KDAE 007	KDAE 008	KDAE 010	KDAE 012	KDAE 015			
(00	ling ca	oacity	USRT	50	60	70	80	100	120	150			
Cooling capacity Heating Capacity		kW	176	211	246	281	351	422	527				
Hea	ting Ca	pacity	Mcal/h	133	160	186	213	266	319	399			
			kW	155	186	217	247	309	371	464			
		Temp.	Ĉ		12 / 7 C . (Heating 55.6 / 60 C)								
Chilled &		&	ton/h	30.2	36.3	42.3	48.4	60.5	72.6	90.7			
Hot Water		Hot	mAq	7.6	7.7	5.8	5.4	5.9	6.0	8.0			
		Water	mm		8		100						
<u></u>		Temp.			32 / 37 C								
	FI	ow rate	ton/h	50	60	70	80	100	120	150			
Hot Water	F	P. Drop	mAq	3.5	3.7	8.2	7.7	3.3	3.5	9.6			
	Cor	nnection	mm		1	00				125			
		Cooling	Nm /h	12.0	14.4	16.8	19.2	24.0	28.8	36.0			
	Gas	Heating	Nm /h	15.0	18.1	21.1	24.1	30.1	36.1	45.1			
		Connection	mAq		I		40 (4,000 mn	n Aq)					
Fuel		Cooling	kg/h	12.4	14.8	17.3	19.8	24.7	29.6	37.1			
	Oil	Heating	kg/h	15.5	18.6	21.7	24.8	31.0	37.2	46.5			
		Connection	mm		1	0	I		15				
	Pov	ver Source					3 O 380V 6	50Hz					
	Abs.	Pump No. 1	kW(A)		1.2 (4.0)		2.0 (6.0))				
	Abs.	Pump No. 2	kW(A)		0.3 (1.6)		0.4 (1.6))				
	R	ef. Pump	kW(A)		0.2 (1.1)	0.3 (1.5)						
	Pu	rge Pump	kW(A)	0.4 (1.4)									
Electric	Bur	ner Blower	kW(A)	0.37	1.0)			0.75 (2.1	0.75 (2.1)				
	C	Dil Pump	kW(A)	0.24 (0.6)									
	Con	itorol Panel	kW(A)	0.2 (0.5)									
	Total	Gas	А	9.	6	10	0.7		13.1				
	Amp.	Oil	А	9.	б	10	0.7		13.7				
	L	ength(L)	mm	2.9	00	3.4	00	2.633	2.832				
Size	V	Vidth(w)	mm	1.8	90	2.1	00	1.9	46	2.051			
	Н	leight(H)	mm		2.2.	20				2.024			
		Rigging	Ton	2.8	3.0	3.3	3.7	4.0	4.2	5.1			
Neight	(Operatin	Ton	3.2	3.4	3.6	4.0	4.8	5.0	6.1			
Space fo	or Tube	Replacement	mm	2.0	00		2.4	.00					

Note

1. 1 USRT = 3,024 kcal/h

Vorking Pressure of each water side is based on 1.0MPa (151 psig).
 Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm 3 , Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg.
 Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2 ·h. "C/kcal for Evaporator.

Double-Effect Direct Fired Absorption Chiller & Heater - Middle Efficiency Model (KDAE) - COP : 1.364

KDAE	KDAE 018	KDAE 021	KDAE	KDAE	KDAE	KDAE 036	KDAE	KDAE	KDAE 050
017			024	028	032		040	045	
017	180	210	240	280	320	360	400	450	500
597	633	738	844	984	1.125	1.265	1.406	1.582	1.757
452	479	559	639	745	852	958	1064	1198	1331
626	557	650	742	866	990	1.113	1.237	1.392	1.546
	1			12/7 C. (Hea	ting 55.6 / 60 (2)	•		
102.8	108.9	127.0	145.2	169.3	193.5	217.7	241.9	272.2	302.4
8.0	8.1	7.5	7.4	5.3	5.2	5.7	5.9	5.1	5.3
1	00	12	25		15			2	00
	1			32 /	37 C	0		1	1
170	180	210	240	280	320	360	400	450	500
9.8	10.1	5.8	4.7	8.7	8.8	8.9	8.8	8.6	8.7
		15	0		20	00		2	50
40.8	43.2	50.4	57.6	67.2	76.8	86.4	96.0	108.0	120.0
51.2	54.2	63.2	72.2	84.3	96.3	108.4	120.4	135.4	150.5
			40 (4,000 mm Aq)						mm Aq)
42.0	44.5	51.9	59.3	69.2	79.1	88.9	98.8	111.2	123.5
52.7	55.8	65.1	74.4	86.8	99.2	111.5	123.9	139.4	154.9
					20				
					3 O	380V 60Hz			
		2.4 (7.5)	3.0 (11.0)		3.4 (10.2)	
			1.2 (4.5)			1.5 (5.0)		
					0.4 (15.0)			
					0.4	(1.4)			
1.1 (4.0)	1.5 (4	.0)	3.0 (11.0)	2.2 (5.0)	3.0 (6.5)
0.55	(2.1)				0.4 (15.0)			
					0.2 (0.5)			
15	5.0	32		36.8	37.4	37.1		38.6	
17	7.1	35	5.0	38.9	39.5	39.2		40.7	
3.644		3.6	570	4.720		4.8	60	4.	910
	2.060		2.	140		2.3	80	2.	640
			2.:	381		2.5	10	2.	620
5.4	5.6	6.4	7.6	8.1	8.7	10.8	11.0	13.2	13.4
6.5	6.7	7.9	8.2	9.1	9.8	12.3	12.7	15.2	15.5
	3.400	3.4	100			4.5	500		

Note

1. 1 USRT = 3,024 kcal/h

Working Pressure of each water side is based on 1.0MPa (151 psig).
 Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm 3 , Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg.

4. Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2 ·h· "C/kcal for Evaporator.

Double-Effect Direct Fired Absorption Chiller & Heater - High Efficiency Model (KDAH) - COP : 1.51

MODEL		UNIT	KD 0	AH I O	KD 0	AH 13	KD 0	AH 6	KE 0	0AH 20	KDAH 025		KDAH 030		
Cool	ling capacity	USRT	92	100	120	130	147	160	184	200	230	250	276	300	
000	Cooling capacity		323	351	420	457	517	562	647	703	808	879	970	1.054	
Heat	Heating Capacity		245	265	506	344	623	423	779	529	974	662	1168	794	
		kW	285	308	588	400	724	492	905	615	1.132	769	1.358	923	
Chilled -	Temp.	Ĉ	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7 [°] C	15/7°C	
&	&	ton/h	55.6	37.8	72.3	49.1	89.0	60.5	111.3	75.6	139.1	94.5	166.9	113.4	
Hot Water	Hot	mAq	10.3	10.8	10.5	11.3	11.8	10.4	7.5	10.4	11.4	10.0	11.3	10.4	
	Water	mm	100	80	100	80	125	100	125	100	150	125	150	125	
-	Temp.	Ĉ						32 /	37°C						
Cooling	Flow rate	ton/h	92	100	120	130	147	160	184	200	230	250	276	300	
Water	P. Drop	mAq	7.9	4.8	8.1	5.3	6.0	7.2	6.3	7.8	5.7	6.9	4.9	6.0	
	Connection	mm		10	100			15	50			20	0		
-	Cooling	Nm /h	18.7	20.4	24.4	26.5	30.0	32.6	37.5	40.7	46.8	50.9	56.2	61.1	
Fuel	Heating	Nm /h	29.4	31.7	60.7	41.3	74.8	50.7	93.5	63.5	116.8	79.4	140.2	95.3	
	Connection	mAq		40(4.000mmAq)											
-	Power Source			3Ø 400V 50Hz											
-	Abs. Pump No. 1	kW(A)		1.2 (4.0))				2.2 (5.5)				3.0 (11.0)	1	
-	Abs. Pump No. 2	kW(A)					0.3 (1.4)					0.75(2.5)			
Electric	Ref. Pump	kW(A)					().2 (1.1)					0.4 (1	.5)	
-	Purge Pump	kW(A)		0.4 (1.4)											
-	Burner Blower	kW(A)			0.75(2.	1)					1.1(4.0)		1.5 (4	0)	
-	Contorol Panel	kW(A)					I	0.2 (0.5)						
	Total Amp.	А		10	.9		12	3	14	.2	20.	8	20.9)	
-	Length(L)	mm	3	.300	3.3	354		40	42		444	10	460	1	
Size	Width(w)	mm	2	.120	2.2	210	2.1	80	2.8	300	285	50	305	0	
	Height(H)	mm	2	.535	2.6	555	2.5	35	2.5	565	2.7	05	2.90)6	
Weight	Rigging	Ton	б	.0	6.8	3	8.1		8.8		10.6		13.1		
	Operatin	Ton	6	.7	7.5	5	9.0 9.9				12.3 15.1				
Space fo	r Tube Replacement	mm		2.6	500					3.70	00				

Note

1. 1 USRT = 3,024 kcal/h

2. Working Pressure of each water side is based on 1.0MPa (151 psig).

3. Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm 3 , Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg.

4. Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2.h. 'C/kcal for Evaporator.

Double-Effect Direct Fired Absorption Chiller & Heater - High Efficiency Model (KDAH) - COP : 1.51

KD 03	AH 36	KD 04	AH 40	KDAH 045		KDAH 050		KDAH 056		KDAH 063		KDAH 070		KDAH 080		
331	360	368	400	414	450	460	500	515	560	580	630	644	700	736	800	
1.164	1.265	1.293	1.406	1.455	1.582	1.617	1.757	1.811	1.968	2.037	2.214	2.263	2.460	2.587	2.812	
1402	953	1558	1058	1753	1191	1947	1323	2118	1482	2454	1667	2726	1852	3116	2117	
1402	953	1558	1058	1753	1191	1947	1323	2118	1482	2454	1667	2726	1852	3116	2117	
12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	12/7°C	15/7°C	
200.3	136.1	222.6	151.2	250.4	170.1	278.2	189.0	311.6	211.7	350.5	238.1	389.5	264.6	455.1	302.4	
13.2	13.0	13.3	13.1	11.1	13.0	11.3	13.1	8.2	9.0	11.0	12.1	14.4	15.8	12.3	14.3	
200	150	200	150	200	150	200	150	200	200	200	200	200	200	250	200	
				1		1	32 /	37°C								
331	360	368	400	414	450	460	500	515	560	580	630	644	700	736	800	
9.1	5.8	9.2	6.0	8.5	10.3	8.8	10.7	5.6	6.7	7.5	9.0	9.8	11.9	8.7	10.6	
250		1	1	250	I	1	I	300								
67.5	73.3	74.9	81.5	84.3	91.6	93.7	101.8	104.9	114.0	118.0	128.3	131.1	142.5	149.9	162.9	
168.2	114.3	186.9	127.0	210.3	142.8	233.8	158.7	261.7	177.8	294.4	200.0	327.1	222.2	373.8	253.9	
		40(4.000)mmAq)		50(4.000mmAq)											
				1			3Ø 40	00V 50Hz	<u>.</u>							
	3.4(1	0.2)		2.5(15.0)								6.6(21.0))			
	0.75(2.5)		2.2(5.5)					5)					3.0(11.0)		
					2.2(5.5)					1.5(3.9)						
										0.4(1.4)						
	2.2(5	.0)				3.7(8.1)					5.5(13.0)			
									0.2 (0.5)						
	21.1					32.0				42	.9	45.			50.8	
5.397 6.49					93		6.0	74	6.6	562		7160				
3.010 3.016 2.770					840	3.2	200		240	3.3	70	355	0			
	886	2.8			3.0				2.5			2.7		2.90		
	5.1	17.			9.0	20			2.2	24.7		27.3		31.0		
17	7.2	19.4	4	2	1.5		22.6 26.7			28.4 31.2			35.5			
	470	0			57	00		5	200	57	00		680	00		

Note

1. 1 USRT = 3,024 kcal/h

2. Working Pressure of each water side is based on 1.0MPa (151 psig).

3. Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm 3 , Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg.

4. Fouling factor 0.0001 m 2.h, 'C/kcal for Absorber and Condenser, 0.0001 m 2 ·h· "C/kcal for Evaporator.

Note	

 Note 			

